
1

App Note

VoxStack GSM Gateway API

Rev: 2.0

Date: On July 7, 2014

From: OpenVox support group

Contact Info: support@openvox.com.cn

Contents

OpenVox GSM Gateway HTTP Interface.. 2

HTTP to SMS Configuration ... 2

HTTP to SMS Samples .. 5

SMS to HTTP Configuration ... 6

SMS to HTTP Samples .. 7

Supplement 1: Using Commands or AMI Interface to Send Long SMS 8

Supplement 2: Samples for Sending Long SMS via AMI Interface 10

mailto:support@openvox.com.cn

2

OpenVox GSM Gateway HTTP Interface

OpenVox gateway supply plentiful external interfaces to meet clients’ diversified needs

about SMS service. OpenVox has been committed to better meet the needs of customers

and create a convenient and flexible customer experience for use. The AMI and API

interface consist of the whole and plentiful SMS system and interface type of the

OpenVox GSM gateway for now.

The AMI interface has been using early. The API interface is just completed.

The HTTP interface of OpenVox SMS is developed to be sample to use and meet

customer’s needs for the gateway compatibility with their SMS platform. We believe

that you can spend less time and price to build your own SMS platform via using our

HTTP interface. Absolutely, if you already have a stable and fully functional SMS

platform, we also believe that you can make the SMS function of OpenVox GSM

gateway compatible with your SMS platform via making a few changes, even no need

to change.

HTTP to SMS Configuration

Sending SMS:

Step 1: Configure the HTTP SMS sending Interface on the OpenVox Gateway website.

Enter the menu: SMSSMS SettingsHTTP to SMS, as shown in the figure below.

Step 2: Enable the HTTP to SMS function as below:

3

Enable: Enable the HTTP to SMS function, default is closed.

URL: Sending the SMS url, the parameters’ introduction are as below:

Username: The user name for certification. You can define the username or just use the

one for WEB login.

Password: The secret for certification. You can define the password or just use the one

for WEB login.

Phone number: The destination to send the SMS, usually the target cellphone number.

Message: The SMS context

Port: Optional parameter, need to specify which port to send, such as: gsm-1.2

Report: Optional parameter, to send the type of SMS report, such as: report=String

Timeout: Timeout, milliseconds, such as: timeout=5000

User Name: Custom user name, if u select the “Use web server’s user and password”,

then use the WEB login username and secret.

Password: Custom secret, if select the “Use web server’s user and password”, then use

the WEB login username and secret.

Report: The type of news report, supporting 2 kinds of news report format, String and

JSON. If you choose “No Report”, it means you don’t need the news report.

When the gateway receive a HTTP request to send SMS, it will choose one port from

those you selected, for the descending order. For example, if sending SMS via gsm-1.1

port for the first time, then the second time it will choose the gsm-1.2, etc.

4

Advance options

Debug: The level of debug messages (warning: this function is used to debug the error

by technical support staff. Suggest keeping it in default.)

Timeout: Sending the timeout, default is 0, the unit is in seconds.

Wait Timeout: Waiting for the massage to report the timeout, default is 20 seconds, the

unit is seconds.

GSM Send Timeout: GSM port send the timeout, default is 10 seconds, the unit is

seconds.

Warning: Suggest to keep the Advance option in default or not to enable it.

(After you finish the configuration, please click the save button to save it and apply it as

shown infigure below.)

Step 3: Use the HTTP interface to send SMS

Try to input a URL in the browser and click the ENTER key, the gateway will get the

news report back to the current page, shown as figure below.

5

HTTP to SMS Samples

Use PHP to call the gateway HTTP interface, as follows:

 #!/usr/bin/php -q

 <?php

 function SendSMS()

 {

 // 1. Initialize an CURL session.

 $ch = curl_init();

 //2.Setting the request options, including specific URL.

curl_setopt($ch,CURLOPT_URL,"http://172.16.8.46:80/sendsms?

username=admin&password=admin&phonenumber=1363291902

6&message=test&port=gsm-4.2&report=String&timeout=5");

 // 3. Execute a CURL session and get the reply.

 $response = curl_exec($ch);

 // 4. Release the Curl handle and close the CURL session.

 curl_close($ch);

 }

 SendSMS();

 ?>

6

The results are as follows：

SMS to HTTP Configuration

Receiving SMS:

At present we delivered the SMS the gateway received to s specific URL link address in

an active way.

Step 1: Configure the HTTP interface to receive the SMS in OpenVox gateway.

 Enter the menu: SMS SMS SettingsHTTP to SMS, shown as figure below:

Step 2: Enable the SMS to HTTP, shown as figure below：

Hostname: the DNS host name or IP address of the server used to store resources.

Sometimes, it also includes the user name and secret needed link to the server before

the host name.

7

The integer is optional. When omit, use the default port. All kinds of protocols have

default port number, such as HTTP port’ default number is 80. Sometimes, for the sake

of safety or others, we could redefine the port, using the non-standard port number. In

this situation, the port number can not be omitted in the URL.

Separated by zero or more "/" symbol strings, commonly used to represent a directory

or file address on the host.

Used to deliver parameters to the dynamic web page

(Such as the pages made by CGI, ISAPI, PHP/JSP/ASP/ASP or NET technology, etc.)

Step 3: Use HTTP interface to receive SMS.

Warning: Before using this instance, please make sure you’ve installed and configured

the web server correctly. This instance runs on the apache server.

The GSM gateway configuration is shown as follows:

SMS to HTTP Samples

Edit the file test.php in the /var/www/html directory.

<?php

 $num=$_GET['num'];

 $port=$_GET['port'];

 $message=$_GET['message'];

 $Begin = "--------------Received Message-------------\n";

 $Message = "Received Message:".$message." \n";

 $MyPhonenumber = "Phomenumber:".$num."\n";

8

 $MyTime = "Time:".$time."\n";

 $MyPort = "Port:".$port."\n";

 $Time = date("Y-m-d H:i:s");

 $MyTime = "Time:".$Time;

 $MyStr = $Begin.$Message.$MyPhonenumber.$MyPort.$MyTime." \n";

 $file_pointer = fopen("/var/www/html/message.txt","a+");

 fwrite($file_pointer,$MyStr);

 fclose($file_pointer);

 ?>

Create the file message.txt in the /var/www/html directory.

Try to send a SMS to gateway and then open the message.txt. The result is as follows:

#vim message.txt

From the result we can see that the gateway received two messages in 2014-07-07 both

via gsm-4.2 port.

Supplement 1: Using Commands or AMI Interface to Send

Long SMS

For now OpenVox gateway supports long SMS, no matter using WEB GUI or

AMI/HTTP interface. The follows is instruction for sending long SMS via AMI

interface.

Step 1: Try to send long SMS using the command (For more details, please learn our

9

company’s AMI documents), shown as figure below.

Step 2: Sending long SMS.

Warning: To send long SMS (more than 160 bytes) via AMI interface, you need to

break up your text messages (article points to send), and then to send it! That can ensure

the long SMS you have sent for a whole article!

Sending command:

gsm send sync csms <destination> <message> <flag> <smscount>

<smssequence> <timeout>

span: the port used to send SMS, such as gsm-1.1 means to send long SMS using the

first port

destination: the cellphone number to receive the SMS

message: the SMS context

flag: the identity of the letter, for example, when you need to send a letter more than

160 bytes divided into two to send, you must ensure that these two orders have the same

identity, scope of identity is from 00 to ff

smscount: the number of orders to split the letter, such as you need to divide the letter

into 4 parts to send, then you should fill in 4

Smssequence: the queue to send, for example, you need to divide the letter into 2 parts

to send, then the smssequence of the first order should be 1, the second order’s should

be 2, etc.

timeout: timeout to send, milliseconds

instance:

10

Instruction: In this instance dividing the letter of 8 bytes into 2 parts to send, firstly

send a “test”, secondly send other “test”. But you only receive one letter and its context

is “testtest” .

Supplement 2: Samples for Sending Long SMS via AMI

Interface

Warning: to meet clients’ diversified needs, this instance is written by C language.

Runtime environment: linux

Compile command: gcc sendsms.c –o sendsms

Runtime command: ./sendsms

The complete code is as follows.

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

#include<sys/socket.h>

#include<netinet/in.h>

#include<unistd.h>

//Login

void login_fun(int sock_fd)

{

 char username[20];

 char secret[20];

 int login_len=0;

 int secret_len=0;

 int res = 0;

 char receive_buf[4096];

 char login_buf[40];

 memset(username,'\0',20);

 memset(secret,'\0',20);

 printf("please input your username\n");

 scanf("%s",username);

 fflush(stdin);

 printf("please input your secret\n");

11

 scanf("%s",secret);

 fflush(stdin);

 memset(login_buf,'\0',40);

 sprintf(login_buf,"action:Login\r\nusername:%s\r\nsecret:%s\r\n\r\n",username,

secret);

 login_len = strlen(login_buf);

 if(res = write(sock_fd,login_buf,login_len) == login_len)

 {

 sleep(1);

 memset(receive_buf,'\0',4096);

 if(res = read(sock_fd,receive_buf,sizeof(receive_buf))<0)

 {

 perror("login failed\n");

 return;

 }

 printf("%s\n",receive_buf);

 if(NULL != strstr(receive_buf,"Authentication accepted"))

 {

 printf("login success\n");

 }

 }

}

void sendsms_fun(int sock_fd)

{

 char send_buf[4096];

 char span_num[3];

 char destination[12];

 char message[2048];

 int res;

 int send_len;

 char receive_buf[4096];

 int SMS_Lengh = 160;

 int Message_Lengh = 0;

 int Divided_Lengh =152;

 char segmentation_message[153];

 int temp_count = 0;

 int smscount = 0;

12

 int smssequence = 1;

 int i = 0;

 char flag[3] = "00";

 int timeout = 10;

 memset(send_buf,'\0',4096);

 memset(destination,'\0',11);

 memset(message,'\0',2048);

 memset(span_num,'\0',3);

 printf("please input the span you want used\n");

 scanf("%s",span_num);

 fflush(stdin);

 printf("please input the destination num you want send\n");

 scanf("%s",destination);

 fflush(stdin);

 printf("Please input the message you want send\n");

 scanf("%s",message);

 fflush(stdin);

 Message_Lengh = strlen(message);

 printf("Input Message Lengh is:%d\n",Message_Lengh);

 if(Message_Lengh > SMS_Lengh) //Send Long SMS

 {

 if(Message_Lengh%Divided_Lengh == 0)

 {

 smscount = Message_Lengh/Divided_Lengh;

 }

 else

 {

 smscount = Message_Lengh/Divided_Lengh+1;

 }

 printf("The SMS will be divided into %d part send\n",smscount);

 while(temp_count!=smscount)

 {

 for(i = 0;i<Divided_Lengh;i++)

 {

segmentation_message[i]=message[temp_count*Divide

d_Lengh+i];

 }

 printf("The %d part is:\n",temp_count+1);

 printf("%s\n",segmentation_message);

13

 sprintf(send_buf,"action:Command\r\ncommand:GSM send

sync

csms %s %s %s %s %d %d %d\r\n\r\n",span_num,destination,segmentation_message

,flag,smscount,smssequence+temp_count,timeout);

 printf("send_buf:%s\n",send_buf);

 send_len = strlen(send_buf);

 memset(receive_buf,'\0',4096);

 printf("%s\n",send_buf);

 if(res = write(sock_fd,send_buf,send_len) == send_len)

 {

 sleep(1);

 if(res = read(sock_fd,receive_buf,sizeof(receive_buf))<0)

 {

 perror("send sms error\n");

 return;

 }

 printf("%s\n",receive_buf);

 if(NULL != strstr(receive_buf,"Response: Follows"))

 {

 printf("send SMS success\n");

 }

 }

 temp_count++;

 }

 }

 else

 {

 sprintf(send_buf,"action:Command\r\ncommand:GSM send

sms %s %s %s\r\n\r\n",span_num,destination,message);

 send_len = strlen(send_buf);

 memset(receive_buf,'\0',4096);

 printf("%s\n",send_buf);

 if(res = write(sock_fd,send_buf,send_len) == send_len)

 {

 sleep(1);

 if(res = read(sock_fd,receive_buf,sizeof(receive_buf))<0)

 {

 perror("send sms error\n");

 return;

 }

 printf("%s\n",receive_buf);

 if(NULL != strstr(receive_buf,"Response: Follows"))

14

 {

 printf("send SMS success\n");

 }

 }

 }

}

int main(void)

{

 int client_socket;

 struct sockaddr_in client_addr;

 char ServerIp[20];

 memset(ServerIp,'\0',20);

 printf("Please input your server ip address\n");

 scanf("%s",ServerIp);

 fflush(stdin);

 client_socket = socket(AF_INET,SOCK_STREAM,0);

 if(client_socket < 0)

 {

 perror("create socket error\n");

 return -1;

 }

 client_addr.sin_family = AF_INET;

 client_addr.sin_port = htons(5038);

 client_addr.sin_addr.s_addr = inet_addr(ServerIp);

 if(connect(client_socket,(struct sockaddr *)&client_addr,sizeof(client_addr))<0)

 {

 perror("connect error\n");

 return -1;

 }

 else

 {

 printf("connect to %s success\n",ServerIp);

 }

 //login

 login_fun(client_socket);

 //send SMS

 sendsms_fun(client_socket);

 return 0;

}

