

Test Report of Atom CPU with asterisk G729-G711

codec transcoding

Written by: James.zhu (James.zhu@openvox.cn)

Date: 06/11/2008

Some people buy the Intel CPU (Atom 230) to build an asterisk

server. I did a simple test for codec transcoding. The purpose of test

case is only for reference when you build a Atom CPU based

asterisk server, maybe the test environment is not really completed

due to some limitations such as test tools, bandwidth of LAN,

Network card, version of g729 and the duration of timing, but I try

to give you a picture for asterisk server with transcoding. In this

paper, I will cover installation of G729, testing tools, result of testing

and some screens.

 1

1) Installation of Open Source G729

Before installing g729 codec, make sure the asterisk server can

run properly, then go to the official website to get the binary files

and copy those two files into the default path. The two figure

show the modules as below:

mailto:James.zhu@openvox.cn

 Figure 1

 2

2) Set testing tools

Here, three tools are used: Sipp, tpcdump and wireshark. Please

go to those official websites to get those tools. You must use

tcpdump or wireshark to get a G729 code pcap file. The easy way

to get G729 file is that, using Xlite-Pro version to call other SIP

phone and record down the file with G729 codec by this:

tcpdump -T rtp -vvv dst 192.168.2.108 -w g729.pcap

This should capture the RTP stream from asterisk server and save

it as g729.pcap file. You must make sure the Xlite-pro solely use

G729 codec.

 3

You also can use Wireshark to capture G729 codec and save as

G729.pcap. Capturing the G729 RTP stream by Wireshark filter:

(ip.dst == 192.168.2.108) && (rtp.p_type == 18)

this will filter the G729 codec from 192.168.2.108. Once you get

the G729 codec file, you put the file under pacp folder under

Sipp:

Figure 2

After that, you have to edit the uac_pcap.xml to make sure Sipp

will play with RTP stream. You have to edit the uac_pcap.xml

like this:

 4

Figure 3

Once the Sipp side is done, you have to add a sip account in

asterisk server 1. The sip is named sipp. Please add an account in

asterisk sip.conf. the SIP account information should like this:

Figure 4

 5

And you add other sip (for example 1000) account with codec

allow=ulaw or alaw only. SIP 1000 will forward the sip call from

Spp to asterisk 2, in asterisk 2, some sound files will be played

for certain periods. The dialplan in asterisk 1 likes this:

Figure 5

In this scenario, transcoding will be done from G729 to G711. If

you do not set it properly, asterisk server will report codec

compatibility error. The Sipp test can not be made, please double

check that. Until this step, you can execute the Sipp command to

test:

sipp –sf uac_pcap.xml –s 2005 192.168.2.108 –r 20 –rp 10000

sipp will call uac_pcap.xml file first, and go to asterisk dialplan,

the context “internal” will be called with asterisk server 1. It will

generate 20 calls in 10 seconds. You can test it with different time

variables. You also can press =-*/ to increase the calls or decrease

calls. You can monitor the calls during call connection time by

running sip show channels under asterisk console, you will see

the sipp using g729 and 1000 using ulaw. The figure shows this:

Figure 6

3) Result of Testing

The results are summarized to give users some statistical data. The

scenarios are:

The scenario one:

Sipp(g711)->asterisk-1 with Atom CPU (g711)->asterisk-2(g711)

The scenario two:

Sipp(g729)->asterisk-1 with Atom CPU

(g729->g711)->asterisk-2(g711)

 6

After testing, the results are show as below:

G729->ulaw

 Usage of CPU Current calls Mem CPS

10c-10s 40% 18 3.5 2

20c-10s 53% 24 3.5 2

25c-10s 70% 30 3.5 3

30c-10s 93% 36 3.5 3

Ulaw->ulaw

 Usage of CPU Current calls Mem CPS

10c-10s 9% 12 3.5 1

20c-10s 10% 24 3.5 1

25c-10s 17% 30 3.5 2

30c-10s 17% 37 3.5 3

Table 1

Measurement: calls in 10 seconds, for example: 10c-10s means sipp

will generate 10 calls in 10 second.

 7

CPU consumption

40%

53%

70%

93%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10c-10s 20c-10s 25c-10s 30c-10s

Calls in 10s

U
s
a
g
e

o
f

C
P
U

ulaw->ulaw

g729->ulaw

Figure 7

In conclusion, codec contanscoding will consume much CPU

resource. During the test, some factors must be considered. They are

duration of each events, codecs, length of RTP streams, condition of

Lan transmission, Network cards of asterisk servers. For Intel Atom

CPU, the current calls should be limited less 30 calls. When the peak

time reaches, the SIP calls will generate some warning. For further

test improvement, it is very necessary to make a further investigation

with g729 codec under Sipp RTP test for more accurate result.

 8

Some screens captured for reference:

The scenario one:

Sipp(ulaw)=>Asterisk1(ulaw)=>asterisk2(ulaw)

 9

40s, Cpu 30%, increased by 5 calls in 5 s

The scenario two:

Sipp(g729)=>Asterisk-1(g729->ulaw)=>asterisk-2(ulaw)

Case 1

Cpu 15% asterisk, 20s, 10 calls

 10

CPU over 80%, increased by 5 calls in 5s

 11

 12

Case 2:

1 call in 5s, after 40 m, the sip calls failed.

 13

Case 3:

5 calls in 10s

 14

Case 4:

 15

CPU information:

 16

References:

www.openvox.com.cn

asterisk.org

voip-info.org

http://www.woojar.com/sipp-testing-about-rtp.html

http://www.voipphreak.ca/2007/04/17/using-sipp-to-stress-test-your-

asterisk-14-pbx-system/

http://sipp.sourceforge.net/wiki/index.php/Howto_test_an_Asterisk_

server_using_SIPp

http://sipx-wiki.calivia.com/index.php/Using_SIPp_to_run_perform

ance_tests

http://www.transnexus.com/White%20Papers/Asterisk_Performance

_as_a_SIP_B2BUA.pdf

http://transnexus.blogspot.com/2007/09/asterisk-performance-testing

.html

http://callsolutions.org/voip-tutorial/debian-etch-asterisk-14-h323-g7

29-g723/

http://asteriskglobe.blogspot.com/2008/06/installation-and-general-d

iscussion-on.html

http://www.wireshark.org/

http://www.asteriskblog.com/sniffin-the-voip-traffic/

 17

http://www.panoramisk.com/151/analyzing-voip-with-wireshark/en/

http://www.openvox.com.cn/
http://www.woojar.com/sipp-testing-about-rtp.html
http://www.voipphreak.ca/2007/04/17/using-sipp-to-stress-test-your-asterisk-14-pbx-system/
http://www.voipphreak.ca/2007/04/17/using-sipp-to-stress-test-your-asterisk-14-pbx-system/
http://sipp.sourceforge.net/wiki/index.php/Howto_test_an_Asterisk_server_using_SIPp
http://sipp.sourceforge.net/wiki/index.php/Howto_test_an_Asterisk_server_using_SIPp
http://sipx-wiki.calivia.com/index.php/Using_SIPp_to_run_performance_tests
http://sipx-wiki.calivia.com/index.php/Using_SIPp_to_run_performance_tests
http://www.transnexus.com/White%20Papers/Asterisk_Performance_as_a_SIP_B2BUA.pdf
http://www.transnexus.com/White%20Papers/Asterisk_Performance_as_a_SIP_B2BUA.pdf
http://transnexus.blogspot.com/2007/09/asterisk-performance-testing.html
http://transnexus.blogspot.com/2007/09/asterisk-performance-testing.html
http://callsolutions.org/voip-tutorial/debian-etch-asterisk-14-h323-g729-g723/
http://callsolutions.org/voip-tutorial/debian-etch-asterisk-14-h323-g729-g723/
http://asteriskglobe.blogspot.com/2008/06/installation-and-general-discussion-on.html
http://asteriskglobe.blogspot.com/2008/06/installation-and-general-discussion-on.html
http://www.wireshark.org/
http://www.asteriskblog.com/sniffin-the-voip-traffic/

Test environments:

Cnetos-5.0

Intel Atom 230 CPU

Tools: Sipp-3.1, tcpdump and Wireshark

Asterisk-1.4.21

 18

